初中数学八上教案6篇

时间:
loser
分享
下载本文

一份好的教案能够帮助教师在实际教学中更好地掌握课堂节奏,优化学习体验,教案的制定过程不仅要考虑教学内容,还要与课程进度相结合,以便提高学习成效,以下是好学范文网小编精心为您推荐的初中数学八上教案6篇,供大家参考。

初中数学八上教案6篇

初中数学八上教案篇1

一、教学目标:

1.知识目标:

①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材p63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.

举例说明数a的绝对值的几何意义。(按教材p63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0.

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

用字母a表示数,则绝对值的代数意义可以表示为:

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8,,-的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2.

五、巩固练习

练习一:教材p641、2,p66习题2.4a组1、2.

练习二:

1.绝对值小于4的整数是____.

2.绝对值最小的数是____.

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业

教材p66习题2.4a组3、4、5.

初中数学八上教案篇2

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的.式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

初中数学八上教案篇3

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的另一边bc的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的ab的长,填出相应的bc的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当ab的长为5cm,bc的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可??

售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0

y=-2x2+20x(0

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及p1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y=5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.p3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

初中数学八上教案篇4

教学目标:

知识技能目标

了解必然发生的事件、不可能发生的事件、随机事件的特点.

数学思考目标

学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表

象中,提炼出本质特征并加以抽象概括的能力.

解决问题目标

能根据随机事件的特点,辨别哪些事件是随机事件.

情感态度目标

引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.

教学重点:

随机事件的特点.

教学难点:

判断现实生活中哪些事件是随机事件.

教学过程

【问题情境】

摸球游戏

三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.

游戏规则

每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.

【师生行为】

教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.

学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.

教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.

【设计意图】

通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机 事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.

【问题情境】

指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?

1.通常加热到1 00°c时,水沸腾;

2.姚明在罚球线上投篮一次,命中;

3.掷一次骰子,向上的一面是6点;

4.度量三角形的内角和,结果是360°;

5. 经过城市中某 一有交通信号灯的路口,遇到红灯;

6.某射击运动员射击一次,命中靶心;

7.太阳东升西落;

8.人离开水可以正常生活1 00天;

9.正月十五雪打灯;

10.宇宙飞船的速度比飞机快.

【师生行为】

教师利用多媒体课件演示问题 , 使问题情境更具生动性.

学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的`感知下,达到加深理解的目的.

教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.

【设计意图】

引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世 界的重要工具.

【问题情境】

情境1

5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.

情境2

小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.

在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.

【师生行为】

学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.

【设计意图】

开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.

【问题情境】

请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.

【师生行为】

教师引导学生充分交流,热烈讨论.

【设计意图】

随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.

【问题情境】

李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.

【师生行为】

教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.

【设计 意图】

有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.

【问题情境】

归纳、小结

布置作业

设计一个摸球游戏,要求对甲乙公平.

【师生行为】

学生 反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业 的开放性为学生创设了更大的学习空间.

【设计意图】

课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.

教 学 设 计 说 明

现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游 戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事 件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.

做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在 游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.

初中数学八上教案篇5

1. 经过几年来的不懈努力,你已成为全校闻名的好学生,新的学习生活已经在你面前展开,愿你驾驶着装满知识的巨轮,树起理想的风帆,擎着奋斗的指南针,抵达科学的彼岸。

2. 你是一个很有修养的学生,对待同学总是谦虚友好,对待学习总是毫不怠慢。你守纪、肯学、积极进取,你为人谨慎,待人诚恳,办事认真,表里一致。你团结同学,尊敬老师,关心同学。

勤奋、好学、顽强,是你对美好未来的向往。如果你能在学习上避免浅尝辄止,能深入钻研,形成适合自己的良好的学习方法,排除干扰,静心学习,相信你的成绩会有很大突破的。

3. 真是有缘,初三分班你再一次为我班上的学生,老师再次为有你这样的学生而感到高兴。

你质朴、诚实、好学、上进的品质为老师和同学们称赞。班上评优你所得到的票数,足以证明了你在同学中的威信,你不善言语,不善表现,但你在学习上,在工作上默默的行动,足以感动了大家。你可能会说:我的学习成绩不够优秀。

其实老师要说,你一直是上进的,要强的,各方面都是严格要求自己的,现在的努力,可能不会马上见效,但一直努力下去,付出总会有回报的,将来的你学习、工作都会很出色的。

4. 你是一个宽容、善良、可爱的男孩,期中考试你以优异的成绩令人刮目相看,你品质端正,尊重老师、团结同学,同学们都很喜欢你,在学习上,你一丝不苟,精益求精,

尤其是看你的作业是一大享受,不仅整洁漂亮,而且回答问题有独到的见解,你能承担班级的卫生委员这一职责,工作努力,尽职尽责,同学们渐渐认可了你!虽然你平时不声不响,但你学习勤奋努力,希望你永远保持!争取“冲”到年级前10名!

5. 老师知道你一直很努力,但终因有的学科差距很大而导致你信心屡受打击,可能分科能给你带来好的心情,只是无论如何你都必须加足马力。愿你能把握好自己的人生,永不言弃!

6. 外表秀气柔弱的你,却有着洒脱的个性。你的善良与宽容大度交相辉映,赢得了同学的好评;你的平和与善解人意,让老师倍感欣慰。文笔优美的随笔,是老师怡心养性的享受,

如朋友般的交流是我期盼的师生境界。高二的你更加沉稳与理性,对学习的态度更加专注,成绩有一定的提升。希望不仅要勤学,更要好问,掌握科学方法,提高课堂效率,争取高三更大的进步。

7. 你忠实厚道,朴直豁达,班中的脏活、累活总能看到你的身影,谁有难处你都热情相助,同学老师都愿意接近你。当今具有这些品质尤为可贵。你学习刻苦努力,成绩有所提高。

老师想提醒你面对学习中的困难,切勿焦躁,你最需要的是要自信而不自卑,认真探究学习方法,提高效率,尤其是上课要认真听讲,课后及时消化、巩固。注意学习的每一个细节,做好归纳小结。一步一个脚印地去实现自己的人生目标。

8. 你领悟力强,为人诚朴,品行端正,温文尔雅,是一个小小男子汉。你的机智、聪明、率真,让你显得那样可爱。努力、执著、向上,是你步步攀登的力量;拼搏、追求、奋斗是你学业成功的保证。望你再接再厉,在新的一年里,更充实,更快乐!

9. 我知道你在长大,你对很多事有了更多的主见。我应该对此感到欣慰!但我仍想再给你一点忠告:“有主见”但不要固执己见,多听听父母师长的看法会使你的思想更成熟,行为更有好的收效。

10. 你是一个诚实的男孩,能虚心接受老师的教育,你思想上积极要求进步,但又常常不能严格要求自己,能热爱集体,但又常常给集体抹黑,希望学有所长,但又缺乏刻苦踏实的学习作风,以致学习平平,工作想做好,但又缺乏主动精神,能力也不够。愿你振作起来,“吃一堑,长一智”,做一个优秀的好学生!

初中数学八上教案篇6

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标:

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程:

一、复习引入,输入并贮存信息:

1.提问:如图,在rt△abc中,∠c=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠a、∠b有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点c,测得同顶的仰角为30°,向山沿直线 前进20为到d处,再测山顶a的仰角为60°,求山高ab。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求ab可以解rt△abd和

rt△abc,但两三角形中都不具备直接条件,但由于∠adb=2∠c,很容易发现ad=cd=20米,故可以解rt△abd,求得ab。

⑶解题过程,学生练习。

⑷思考:假如∠adb=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点c,测得山顶a的仰角为30°,向山沿直线前进20米到d处,再测山顶a的仰角为45°,求山高ab。

分析:

⑴在rt△abc和rt△abd中,都没有两个已知元素,故不能直接解一个三角形来求出ab。

⑵考虑到ab是两直角三角形的直角边,而cd是两直角三角形的直角边,而cd均不是两个直角三角形的直角边,但cd=bc=bd,启以学生设ab=x,通过 列方程来解,然后板书解题过程。

解:设山高ab=x米

在rt△adb中,∠b=90°∠adb=45°

∵bd=ab=x(米)

在rt△abc中,tgc=ab/bc

∴bc=ab/tgc=√3(米)

∵cd=bc-bd

∴√3x-x=20 解得 x=(10√3+10)米

答:山高ab是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及cd,例1中 ∠2=2∠1 求ab,则需解rt△abd例2中∠2≠2∠1求ab,则利用cd=bc-bd,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔cd为m米,从地上一点测得塔顶c的仰角为∝,塔底d的仰角为β,求山高bd。

练习2:如图,海岸上有a、b两点相距120米,由a、b两点观测海上一保轮船c,得∠cab=60°∠cba=75°,求轮船c到海岸ab的距离。

练习3:在塔pq的正西方向a点测得顶端p的

仰角为30°,在塔的正南方向b点处,测得顶端p的仰角为45°且ab=60米,求塔高pq。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的rt△abd翻折180°,即可得图6;将基本图形4中rt△abd绕ab旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是ab=ab;练习2的等量关系是ad+bd=ab;练习3的等量关系是aq2+bq2=ab2

五、作业布置,反馈信息

?几何》第三册p57第10题,p58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初中数学八上教案6篇相关文章:

初中数学国培心得体会6篇

初中数学课听课心得体会6篇

初中八年级数学教学工作总结6篇

初中数学教师述职个人述职报告6篇

初中数学教研计划8篇

初中数学校本研修计划7篇

初中数学教研计划精选5篇

初中数学教学计划7篇

初中数学教研计划最新7篇

初中数学备课组工作总结7篇

初中数学八上教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
114332