通过生动的教案,教师能够将抽象概念具体化,帮助学生更好地理解和掌握知识,教案的制定应关注学生的心理健康,设计活动以减轻学习压力,增强积极情绪,以下是好学范文网小编精心为您推荐的长方体表面积教案7篇,供大家参考。

长方体表面积教案篇1
教学目标
(一)理解长方体和正方体表面积的意义。
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
教学重点和难点
(一)长方体、正方体表面积的意义和计算方法。
(二)确定长方体每一个面的长和宽。
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程设计
(一)复习准备
1.口答填空。
(1)长方体有( )个面,一般都是( ),相对的面的( )相等;
(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;
(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。
2.说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)
(二)学习新课
1.长方体和正方体表面积的意义。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?
学生讨论。(把六个面展开放在一个平面上。)
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2.长方体表面积的计算方法。
(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的.长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?
学生四人一组边操作边讨论后归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的。
教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)
(图像要验证相对的面相等,展示每个面对应的长和宽。)
教师:想一想,长方体的表面积如何计算?
学生讨论后归纳,老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?
学生口答老师板书:(或学生板书,同时其余同学填书上。)
解法1:6×5×2+6×4×2+5×4×2
=60+48+40
=148(厘米2)
解法2:(6×5+6×4+5×4)×2
=(30+24+20)×2
=74×2
=148(厘米2)
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高2.5米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。列式:
4×3+4×2.5×2+3×2.5×2
3.正方体表面积的计算方法。
(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?
学生:一个面的面积乘以6。
教师:用棱长来表示它的表面积。
学生:棱长×棱长×6
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6
=9×6
=54(厘米2)
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)
用学生投影片集体订正。
(三)巩固反馈
1.口答课本p27:1。
2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。 ( )
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。 ( )
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。( )
(四)课堂总结及课后作业
1.什么是长、正方体的表面积。长、正方体的表面积如何计算。
2.作业:课本p27:3,4,5。
课堂教学设计说明
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
第一部分教学长、正方体表面积的意义。
第二部分教学长方体表面积的计算方法。
第三部分教学正方体表面积的计算方法。
板书设计
长方体表面积教案篇2
教学要求
1、根据正方体特征,推导出正方体表面积的计算方法。2、学会解决实际生活中有关长方体和正方体表面积的计算问题。3、培养学生思维的灵活性。
教学重点正方体表面积的计算方法。
教学用具教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。
教学过程
一、创设情境
1.看图并回答。(投影显示)
(1)什么是长方体的表面积?
(2)怎样计算这个长方体的表面积?
2.看看各自准备的正方体回答问题。
(1)什么是正方体的表面积?
(2)正方体6个面的面积怎样?
(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)
二、实践探索
1.小组合作学习----正方体表面积的计算。
①题中的棱长就是每个面的什么?
②你能算出这个正方体的表面积吗?
③小组合作,寻找计算方法。
3×3×6或者32×6
=9×6=9×6
=54(平方厘米)=54(平方厘米)
说明:上面两种做法都对,32表示2个3相乘。
2.教学计算长方体和正方体某几个面的面积。
在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。
(1)帮助学生分析题意。
①售米的木箱是什么体?
②“上面没盖”就是没有哪一个面?
③要求的问题,实际上是算哪几个面的'面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
三、课堂实践
做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。
四、课堂。
学生今天学习的内容。
五、课堂实践
做练习六的第5、6、7题。
长方体表面积教案篇3
学习内容:
长方体和正方体的表面积练习(教材26页第11~13题)
学习目标:
1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。
2.培养学生分析、解决问题的能力,以及良好的思维品质。
教学重点:
掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题
教学难点:
能灵活地解决一些实际问题
教具运用:
课件
教学过程:
一、复习导入
1.如果告诉了长方体的长、宽、高,怎样求它的表面积?
2. 如果要求正方体的表面积,需要知道什么?怎样求?
3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?
4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?
二、课堂作业
完成教材第26页第11~13题。
1.第11题
(1)分析题目的已知条件和问题。
(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?
(3)列式解答
4[86+(83+63)2-11.4]
=4[48+422-11.4]
=4120.6=482.4(元)
答:粉刷这个教室需要花费482.4元。
2.第12题
这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的.面积不能算在表面积里。
分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。
左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。
解:涂黄油漆[40(65-10)+4065+4040]2
=(2200+2600+1600)2=12800(cm2)
涂红油漆40652+40403=5200+4800=10000(cm2)
答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。
3.第13题
提示:把一个长方体从中间截断,就可以分成两个正方体。
让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。
小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。
三、课堂小结
通过这节课的学习,你有什么收获?还有什么问题?
四、课后作业
完成练习册中本课时练习。
板书设计:
长方体和正方体的表面积(3)
长方体的表面积(长宽+长高+宽高) 2
正方体的表面积边长边长6
长方体表面积教案篇4
?教学目标】
[认知目标]:
1. 知道物体外部所有面的总面积叫做它的表面积。
2. 能正确计算正方体和长方体的表面积。
[能力目标]
让学生自主探究正方体和长方体表面积的计算方法。
[情感目标]
通过实际的操作过程,体验学习的快乐。
?教学重点】
掌握与理解正方体、长方体表面积的含义及计算表面积的方法。
?教学难点】
正方体、长方体表面积的推导过程。
?教学准备】
教学课件、长方体、正方体的附页等。
?教学过程】
一、复习导入:
1. 正方形的面积计算公式是什么?
板书:正方形的面积
s = a2
2. 请学生观察老师手中的正方体,回答问题?
(1)正方体有几个面?
(2)有什么特征?
(3)如何计算它们的面积?
3. 这节课让我们学习有关求正方体面积的知识。
4. 揭示课题:正方体的面积
?说明:让学生回忆有关正方体特征的知识,承上启下引导出本堂课的学习内容,激发学生学习的积极性。】
二、探究新知:
(一)正方体的表面积。
1. 小胖将一个棱成为5厘米的正方体盒子沿着棱切开,得到一个正方体表面的展开图。
2. 先仔细观察正方体表面的展开图,然后回答问题?
(1)正方体表面的展开图是由六个什么形状的面组成的?
(2)这六个面的形状都相同吗?
(3)面积都相等吗?
(4)面积的总和是多少?
这个正方体表面的展开图有6个正方形的'面,它们的形状都相同,面积都相等。
面积的总和 = 6 × ( 棱成 × 棱长)
= 6 ×( 5 × 5)
= 150( cm3)
3. 正方体有六个大小相同的正方形面,六个面的面积总和称为正方体的表面积。
4. 小结。
?说明:充分让学生通过已有的知识和经验,小组合作,主动探究求正方体的表面积。】
三、练一练:
(一)求下面正方体的表面积?
1. 正方体的棱长为6dm,求它的表面积。
解: s = 6 a2
=6×6×6
=216(cm2)
答:它的表面积是216平方厘米。
2. 正方体的棱成为7cm,求它的表面积。
一、探一探,练一练:
1. 下面哪些图形能沿虚线相折能围成正方体?先想一想,再利用附页1中的图形试一试。
2. 请学生把附页上的图形剪下后,先估测,然后拼一拼,看看是否能够围成正方体?
3. 交流讨论。(课件演示)
其中:a、c、e、f这四幅能够拼成正方体。
b和d的图形不能拼成正方体。
4.小亚用1立方厘米的正方体积木搭出了一个棱长为3厘米的正方体,并且将它的表面涂上了红色。
(1)三面涂上红色的1立方厘米的正方体积木有多少个?
(2)两面涂上红色的1立方厘米的正方体积木有多少个?
(3)一面涂上红色的1立方厘米的正方体积木有多少个?
(4)没有面涂上红色的1立方厘米的正方体积木有多少个?
5. 学生讨论交流,请学生可以用小正方体搭一搭,找出规律。
6. 利用课件反馈。
7. 小结。
?说明:这里的正方体的展开图并不是这一节的重点,只是为了能帮助学生推导出表面积,并相应地积累空间经验,并在思路上能从“立体”--“平面”--“立体”。第4题计数时要讲究策略:三面有颜色的在八个角上,共8块;两面有颜色的在各条棱上,每条棱上只有1块,共12块;一面有颜色的在6个面的中心,共6块;没有颜色的,只有1块,在“中心”。】
五、巩固练习:
(一)看图练习:
1. 下面的正方体的棱长为5m,先求它的表面积,再求体积。
2. 下面正方体的棱长为0.7dm,先求它的表面积,再求体积。
3. 下面图形中哪些能围成正方体?哪些不能围成正方体?
(二)拓展小练习:
1. 正方体的表面积是96平方厘米,它的一个面的面积是多少平方厘米?它的棱长是多少厘米?
2. 做一个棱长为7dm的正方体无盖木盒,需要多少平方分米的木板?
3. 用一根长60厘米的铁丝,围成一个正方体的小铁筐,在外面贴上手工纸,需要多少平方厘米的手工纸?它的体积是多少?
4. 用3块棱长为3厘米的小正方体拼成一个长方体,面积减少多少平方厘米?
5. 做一个正方体的玻璃金鱼缸,棱长为80厘米,需要多少平方厘米的玻璃?
6. 正方体的棱长是6cm,它的表面积和体积相比较,情况怎样?
7. 一个棱长为4厘米的正方体,在它的角上挖掉一块棱成为2厘米的小正方体(如下图),它的表面积发生了什么变化?是增加、减少、相等还是无法确定?
8. 小结。
?说明:通过练一练和拓展小练习,让学生进一步巩固求正方体表面积的计算方法。】
六、总结:
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
长方体表面积教案篇5
教学目标:
通过练习使学生能熟练地求正方体、长方体的表面积。
教学重点和难点:
重点:正方体、长方体的表面积的计算。
难点:正方体、长方体的表面积的计算。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:
长方体体积计算公式:v=abh 正方体体积计算公式:v=a3
长方体表面积计算公式:s=2(ab+ah+bh) 正方体表面积计算公式:s=6a2
练习
1. 计算下面形体的表面积。(单位:厘米)
(1)解:
(2)
(1)s=2(ah+ab+bh)
=2×(6×2+6×1+1×2)
=2×(12+6+2)
=2×20
=40(平方厘米)
答:长方体的表面积是40平方厘米。
(2)解:s=6a2
=6×62
=6×(6×6)
=6×36
=216(平方厘米)
答:正方体的表面积是216平方厘米。
(3)解:s=2(ah+ab+bh)
=2×(3×12+3×1+1×12)
=2×(36+3+12)
=2×51
=102(平方厘米)
答:长方体的表面积是102平方厘米。
(4)解:s=2(ah+ab+bh)
=2×(4×4+4×3+3×4)
=2×(16+12+12)
=2×40
=80(平方厘米)
答:长方体的表面积是80平方厘米。
(5)解:s=2(ah+ab+bh)
=2×(5×5+5×1+1×5)
=2×(25+5+5)
=2×35
=70(平方厘米)
答:长方体的表面积是70平方厘米。
2. 想一想,上面形体(4)(5)的表面积还可以怎么求?
求出前面的面积再乘以4就是上下左右4个面的面积之和,再加上前后面的`面积之和,就是它的表面积。
3. 填空:
(1)长方体的表面积是(2×(9×3+9×2+2×3) )(填算式)。
(2)长方体的表面积是(2×(8×1+8×4+4×1))(填算式)。
(3)长方体的表面积是(2×(1×5+1×5+5×5)或5×5+4×(1×5) )(填算式)。
(4)正方体的表面积是(6×(7×7))(填算式)。
(5)长方体表面积计算公式是(s=2(ah+ab+bh))。
(6)正方体表面积计算公式是(s=6a2)。
4. 一个长方体的长是2厘米,宽3厘米,高6厘米。分别求出它的底面面积,前面面积与左面面积。
解:2×3=6(平方厘米)
2×6=12(平方厘米)
3×6=18(平方厘米)
答:它的底面面积是6平方厘米,前面面积12平方厘米,左面面积是18平方厘米。
5. 长方体的长是5厘米,宽4厘米,高3厘米,它的表面积是多少平方厘米?
解:s=2(ah+ab+bh)
=2×(5×3+5×4+4×3)
=2×(15+20+12)
=2×47
=94(平方厘米)
答:长方体的表面积是94平方厘米。
6. 做一个长15分米,宽4米,高3分米的长方体铁皮油箱,至少需要多少铁皮?
解:4米=40分米
s=2(ah+ab+bh)
=2×(15×3+15×40+40×3)
=2×(45+600+120)
=2×765
=1530(平方分米)
答:长方体的表面积是1530平方分米。
总结:长方体表面积计算公式是s=2(ah+ab+bh),正方体表面积计算公式是s=6a2。
检测目标达成练习:练习册p15
长方体表面积教案篇6
设计说明
1.加强动手操作,促进学生的思维发展。
因为数学知识具有抽象性,所以要多引导学生在操作中思考,培养学生掌握技能技巧,促进学生的思维发展。本节课的教学设计在让学生理解长方体、正方体表面积的意义时,先让学生动手操作,“解剖”长方体和正方体,展示出长方体和正方体各自的6个面。然后通过比较分析,深刻地体会长方体或正方体各自6个面的面积之和就是这个长方体或正方体的表面积。
2.合作探究,实现自主发现。
合作探究是学生学习数学的主要方式之一,它能促进学生对抽象的数学知识的理解。在学生感知了表面积的意义之后,放手让学生在小组内合作交流,自主探究长方体表面积的不同计算方法,然后根据正方体的特征归纳出正方体表面积的计算方法,培养学生的优化思维和求异思维。
课前准备
教师准备ppt课件长方体纸盒
学生准备长方体牙膏盒教学过程
教学过程
⊙猜测质疑,引入新课
师:长方体和正方体在我们的生活中应用得非常广泛,老师也收集到这样两个纸盒(出示两个大小比较接近的长方体纸盒),怎样才能比较出这两个长方体纸盒,谁用的纸板比较多呢?(学生讨论后汇报)
设计意图:通过比较谁用的纸板比较多,使学生产生拆开纸盒研究长方体表面积的想法,从而主动探究体与面的关系,同时引发学生的争论,使其主动思考,寻求解决问题的方法。
⊙演示操作,形成表象,建立概念
1.感受表面积的意义。
(1)把长方体牙膏盒沿棱剪开并展开,分别用“上”“下”“前”“后”“左”“右”标明6个面,并让学生观察后回答:
①长方体哪几组面的面积相等?
②长方体每个面的长和宽与长方体的长、宽、高有什么关系?
(学生观察后汇报)
师明确:长方体上、下两个面的面积相等,每个面的长和宽就是长方体的长和宽;前、后两个面的面积相等,每个面的长和宽就是长方体的长和高;左、右两个面的面积相等,每个面的长和宽就是长方体的宽和高。
(2)什么叫长方体的表面积?
(板书:长方体6个面的总面积,叫做它的.表面积)
设计意图:通过亲自动手操作剪开并展开长方体实物,让学生真正参与获取知识的过程。在实际观察中让学生充分感知并建立表面积的表象,从而发现并归纳出表面积的意义。
2.探究求长方体表面积的计算方法。
(1)回忆。
师:同学们,你们还记得长方形的面积计算公式吗?
预设
生:长方形的面积=长×宽。
(2)议一议。
长方体上、下面的面积=()×();
长方体前、后面的面积=()×();
长方体左、右面的面积=()×()。
(3)总结长方体表面积的计算方法。
方法一长方体的表面积=长×宽×2+长×高×2+宽×高×2,用字母表示为s=2ab+2ah+2bh。
方法二长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为s=(ab+ah+bh)×2。
长方体表面积教案篇7
教学目标:
结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。
知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。
3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。
教学重点
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教学难点
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教学媒体
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程
一、复习准备。
(一)口答填空。
1.长方体有( )个面,一般都是( ),相对的面的( )相等;
2.正方体有( )个面,它们都是( ),正方形各面的( )相等;
3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
4.这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米。
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的'表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)
二、学习新课。
(一)长方体和正方体表面积的意义。
1.教师提问:什么叫做面积?
长方体有几个面?正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2.教师明确:这六个面的总面积叫做它的表面积。
3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。
4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
(二)长方体表面积的计算方法
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的。
2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
3.练习解答。
做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
长方体表面积教案7篇相关文章: