奇函数性质教案6篇

时间:
Brave
分享
下载本文

教案的准备工作是教师成功传授知识的基础,只有依据实际的教学进度所写的教案才能确保教学内容与学生的学习进程相匹配,好学范文网小编今天就为您带来了奇函数性质教案6篇,相信一定会对你有所帮助。

奇函数性质教案6篇

奇函数性质教案篇1

教材分析

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

1 .注重“类比教学” 在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的.

2. 注重“数学结合”的教学

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

( 1 )让学生经历绘制函数图象的具体过程。

( 2 )切莫急于呈现画函数图象的简单画法。

( 3 )注意让学生体会研究具体函数图象规律的方法。

知识技能

目标

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会选择两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

过程与方法目标

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度目标

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

教学重点

一次函数的图象和性质。

教学难点

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

奇函数性质教案篇2

教学目标:

1.进一步认识函数的性质,从形与数两个方面引导学生理解掌握函数奇偶性的概念,能准确地判断所给函数的奇偶性;

2.通过函数的奇偶性概念的教学,揭示函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,培养学生从特殊到一般的概括能力,并渗透数形结合的数学思想方法;

3.引导学生从生活中的对称联想到数学中的对称,师生共同探讨、研究,从代数的角度给予严密的代数形式表达、推理,培养学生严谨、认真、科学的探究精神.

教学重点:

函数奇偶性的概念及函数奇偶性的判断.

教学难点:

函数奇偶性的概念的理解与证明.

教学过程:

一、问题情境

1.情境.

复习函数的单调性的概念及运用.

教师小结:函数的单调性从代数的角度严谨地刻画了函数的图象在某范围内的变化情况,便于我们正确地画出相关函数的图象,以便我们进一步地从整体的角度,直观而又形象地反映出函数的性质.在画函数的图象的时候,我们有时还要注意一个问题,就是对称(见p41).

2.问题.

观察函数=x2和=1x(x≠0)的图象,从对称的角度你发现了什么?

二、学生活动

1.画出函数=x2和=1x(x≠0)的图象

2.利用折纸的方法验证函数=x2图象的对称性

3.理解函数奇偶性的概念及性质.

三、数学建构

1.奇、偶函数的定义:

一般地,如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=f(x),那么称函数=f(x)是偶函数;

如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=-f(x),那么称函数=f(x)是奇函数;

2.函数的奇偶性:

如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性,而如果一个函数既不是奇函数,也不是偶函数(常说该函数是非奇非偶函数),则说该函数不具有奇偶性.

3.奇、偶函数的性质:

偶函数的图象关于轴对称,奇函数的图象关于原点对称.

四、数学运用

(一)例题

例1 判断函数f(x)=x3+5x的奇偶性.

例2 判定下列函数是否为偶函数或奇函数:

(1)f(x)=x2-1; (2)f(x)=2x;

(3)f(x)=2|x|; (4)f(x)=(x-1)2.

小结:1.判断函数是否为偶函数或奇函数,首先判断函数的定义域是否关于原点对称,如函数f(x)=2x,x∈[-1,3]就不具有奇偶性;再用定义.

2.判定函数是否具有奇偶性,一定要对定义域内的任意的一个x进行讨论,而不是某一特定的值.如函数f(x)=x2-x-1,有f(1)=-1,f(-1)=1,显然有f(-1)=-f(1),但函数f(x)=x2-x-1不具有奇偶性,再如函数f(x)=x3-x2-x+2,有f(-1)=f(1)=1,同样函数f(x)=x3-x2-x+2也不具有奇偶性.

例3 判断函数f(x)= 的奇偶性.

小结:判断分段函数是否为具有奇偶性,应先画出函数的图象,获取直观的印象,再利用定义分段讨论.

(二)练习

1.判断下列函数的奇偶性:

(1) f(x)=x+ ;(2) f(x)=x2+ ;

(3)f(x)= ;(4) f(x)= .

2.已知奇函数f(x)在轴右边的图象如图所示,试画出函数f(x)在轴左边的图象.

3.已知函数f(x+1)是偶函数,则函数f(x)的对称轴是 .

4.对于定义在r上的函数f(x),下列判断是否正确:

(1)若f(2)=f(-2),则f(x)是偶函数;

(2)若f(2)≠f(-2),则f(x)不是偶函数;

(3)若f(2)=f(-2),则f(x)不是奇函数.

五、回顾小结

1.奇、偶函数的定义及函数的奇偶性的定义.

2.奇、偶函数的性质及函数的奇偶性的判断.

六、作业

课堂作业:课本44页5,6题.

奇函数性质教案篇3

一、内容与解析

(一)内容:对数函数的性质

(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

二、目标及解析

(一)教学目标:

1.掌握对数函数的性质并能简单应用

(二)解析:

(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

三、问题诊断分析

在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

四、教学支持条件分析

在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程

问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。

设计意图:

师生活动(小问题):

1.这些对数函数的解析式有什么共同特征?

2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

3.通过这些函数图象请从函数值的分布角度总结相关性质

4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

问题3.根据问题1、2填写下表

图象特征函数性质

a>10<a<1a>10<a<1

向y轴正负方向无限延伸函数的值域为r+

图象关于原点和y轴不对称非奇非偶函数

函数图象都在y轴右侧函数的定义域为r

函数图象都过定点(1,0)

自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

例1.比较下列各组数中两个值的大小:

(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

变式训练:1. 比较下列各题中两个值的大小:

⑴ log106 log108 ⑵ log0.56 log0.54

⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

2.已知下列不等式,比较正数m,n 的大小:

(1) log 3 m log 0.3 n

(3) log a m 1)

例2.(1)若 且 ,求 的取值范围

(2)已知 ,求 的取值范围;

六、目标检测

1.比较 , , 的大小:

2.求下列各式中的x的值

(1)

演绎推理导学案

2.1.2 演绎推理

学习目标

1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.

学习过程

一、前准备

复习1:归纳推理是由 到 的推理.

类比推理是由 到 的推理.

复习2:合情推理的结论 .

二、新导学

※ 学习探究

探究任务一:演绎推理的概念

问题:观察下列例子有什么特点?

(1)所有的金属都能够导电,铜是金属,所以 ;

(2)一切奇数都不能被2整除,20xx是奇数,所以 ;

(3)三角函数都是周期函数, 是三角函数,所以 ;

(4)两条直线平行,同旁内角互补.如果a与b是两条平行直线的同旁内角,那么 .

新知:演绎推理是

的推理.简言之,演绎推理是由 到 的推理.

探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

所有的金属都导电 铜是金属 铜能导电

已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断

大前提 小前提 结论

新知:“三段论”是演绎推理的一般模式:

大前提—— ;

小前提—— ;

结论—— .

新知:用集合知识说明“三段论”:

大前提:

小前提:

结 论:

试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.

※ 典型例题

例1 命题:等腰三角形的两底角相等

已知:

求证:

证明:

把上面推理写成三段论形式:

变式:已知空间四边形abcd中,点e,f分别是ab,ad的中点, 求证:ef 平面bcd

例2求证:当a>1时,有

动手试试:1证明函数 的值恒为正数。

2 下面的推理形式正确吗?推理的结论正确吗?为什么?

所有边长相等的凸多边形是正多边形,(大前提)

菱形是所有边长都相等的凸多边形, (小前提)

菱形是正多边形. (结 论)

小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

三、总结提升

※ 学习小结

1. 合情推理 ;结论不一定正确.

2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为

a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误

2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

结论显然是错误的,是因为

a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误

3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为

a.大前提错误 b.小前提错误 c.推理形式错误 d.非以上错误

4.归纳推理是由 到 的推理;

类比推理是由 到 的推理;

演绎推理是由 到 的推理.

后作业

1. 运用完全归纳推理证明:函数 的值恒为正数。

直观图

总 课 题空间几何体总课时第4课时

分 课 题直观图画法分课时第4课时

目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.

重点难点用斜二侧画法画图.

引入新课

1.平行投影、中心投影、斜投影、正投影的有关概念.

2.空间图形的直观图的画法——斜二侧画法:

规则:(1)____________________________________________________________.

(2)____________________________________________________________.

(3)____________________________________________________________.

(4)____________________________________________________________.

例题剖析

例1 画水平放置的正三角形的直观图.

例2 画棱长为 的正方体的直观图.

巩固练习

1.在下列图形中,采用中心投影(透视)画法的是__________.

2.用斜二测画法画出下列水平放置的图形的直观图.

3.根据下面的三视图,画出相应的空间图形的直观图.

课堂小结

通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.

奇函数性质教案篇4

教学目标:

1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

教学重点、难点:

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

难点:根据实际问题中的条件确定反比例函数的解析式

教学过程:

一、情景创设:

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.

(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

(3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

二、新授:

例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为 的长方形蓄水池。

(1)蓄水池的底部s 与其深度 有怎样的函数关系?

(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

三、课堂练习

1、一定质量的氧气,它的密度 (g/3)是它的体积v( 3) 的反比例函数, 当v=103时,=1.43g/3. (1)求与v的函数关系式;(2)求当v=23时求氧气的密度.

2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.

(1)求与x之间的函数关系式;

(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]

3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=.求与x之间的函数关系式及自变量x的取值范围.

四、小结

五、作业

30.3——1、2、3

奇函数性质教案篇5

二次函数的性质与图像(第2课时)

一 学习目标:

1、 掌握二次函数的图象及性质;

2、 会用二次函数的图象与性质解决问题;

学习重点:二次函数的性质;

学习难点:二次函数的性质与图像的应用;

二 知识点回顾:

函数 的性质

函数 函数

图象 a0

性质

三 典型例题:

例 1:已知 是二次函数,求m的值

例 2:(1)已知函数 在区间 上为增函数,求a的范围;

(2)知函数 的单调区间是 ,求a;

例 3:求二次函数 在区间[0,3]上的最大值和最小值;

变式:(1)已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

(2)已知 在区间[0,1]内有最大值-5,求a。

(3)已知 ,a0,求 的最值。

四、 限时训练:

1 、如果函数 在区间 上是增函数,那么实数a的取值

范围为 b

a 、a-2 b、a-2 c、a-6 d、b、a-6

2 、函数 的定义域为[0,m],值域为[ ,-4],则m的取值范围是

a、 b、 c、 d、

3 、定义域为r的二次函数 ,其对称轴为y轴,且在 上为减函数,则下列不等式成立的是

a、 b、

c、 d、

4 、已知函数 在[0,m]上有最大值3,最小值2,则m的取值范围是

a、 b、 c、 d、

5、 函数 ,当 时是减函数,当 时是增函数,则

f(2)=

6、 已知函数 ,有下列命题:

① 为偶函数 ② 的图像与y轴交点的纵坐标为3

③ 在 上为增函数 ④ 有最大值4

7、已知 在区间[0,1]上的最大值为2,求a的值。

8、已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

9、已知函数 ,求a的取值范围使 在[-5,5]上是单调函数。

10、设函数 ,当 时 a恒成立,求a的取值范围。

奇函数性质教案篇6

一、教学设计思路

1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

2. 对教材的分析

(1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3) 难点:探索并掌握反比例函数的主要性质。

二、教学过程

(一)作图象,试比较

1、提问:

(1)=4/x 是什么函数?你会作反比例函数的图象吗?

(2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。

2、按照上述方法作 =—4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。

(二)细观察,找规律

1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

3、让学生观察函数 =/x 的'图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

(1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。

(2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

(三)用规律,练一练

1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。

2、判断一位同学画的反比例函数的图象是否正确。

3、下列函数中,其图象位于第一、三象限的有哪几个?在其图象所在象限内,的值随x的增大而增大的有哪几个?

(四)想一想,作小结

(五)作业

课本137页第1题、141页第2题

奇函数性质教案6篇相关文章:

爱护树木教案6篇

幼儿班篮球教案6篇

中班小雪花教案6篇

长恨歌教案6篇

泥土幼儿教案6篇

绿色出行教案6篇

《套圈》教案6篇

幼儿诗歌语言教案6篇

水果认识教案参考6篇

工匠精神班会教案6篇

奇函数性质教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
83965