在写好教学反思之后,我们才能让个人的教学能力得到一定加强,通过教学反思的书写,很多教师都可以快速发现教学规律,下面是好学范文网小编为您分享的数学思考教学反思6篇,感谢您的参阅。

数学思考教学反思篇1
教学片断:
师:生活中你看到过像这样的射线吗?
生1:手电筒射出的光是射线。
生2:汽车车灯射出的光是射线。
生3:太阳射出的光是射线。
对学生所举例子暂不评价。师取出事先准备的激光电筒,将激光射向墙面,问:这是射线吗?
教室顿时安静了,但转眼,不少小手又举起来了。
生1:不是。(师:为什么?)因为它有两个端点。
生2:射到外面就是射线了。(师将激光射向窗外)
生3:射到我们学校前面的那幢楼,墙上还有一个点,那不是线段吗?
生1:(很着急)我到操场上,往天上照,这就是射线。
生4:如果激光可以穿透一切,就是射线。
师:大家说得都有道理。让我们想象一下,假如手电筒的光可以向一个方向无限延伸,就可以把它看作一条射线。
反思:
我认为,生活化师教学理念而不是目标。生成生活化材料的目的并非是要让学生找到生活中有那些东西可以看作射线。生活中本没有射线,射线是数学抽象的结果,引导学生举例就是要让他们同样经历现实世界的数学抽象过程。而正是在这一过程中,学生得以进一步认识射线的特点,感悟到了什么是“无限”,在这一过程中,学生的空间观念也得到了发展。我想这才是数学生活化的本意。
数学思考教学反思篇2
因为视导,又因为新课上完好几天,所以没有新课来迎接视导,所以选择了代数式这章的复习课来公开课,其实,很少这么系统的一个一个知识点进行复习了,每次都是直接联系,这次因为这一章知识点比较繁多,特别是代数式,整式,单项式,多项式,次数,系数一系列的知识,当时上课的时候学生都很多乱了,烦了,这次章复习就好好的`学习了下,我采取的方式是,学生不看书,回忆下这一章我们都学到多少知识点,学生通过自己举例子,回忆概念,定理,法则,对本章的知识点有了一定的了解,然后做题目,我尽管这一章也学完了几天,但是难得题目基本没有,主要还是选择练习基本知识进行的,所以这次公开课我选择了几个典型的题目,例如求代数的值得时候,我们有直接给未知数的数值,而是告诉这样的式子x+7的绝对值+y+3的平方等于零,这样的题目,还有x的平方+x+7=10,求2x的平方+2x等于多少,因为平时基本没有练习,所以这样的题目让学生直接做出现了问题,我上完,觉得应该先出一个,老师讲解,或者和学生一起探讨,然后在来个变式让学生做,这样会好很多。
小结与思考的课还是不好上的,以后多探索。
最近总觉得自己遇到了屏障,不知道怎么上课了,寻求突破。
数学思考教学反思篇3
现代教学论认为,教学过程不是单纯地传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,数学知识为运用思维方法和形式提供了具体的内容和材料。本节课教师注重渗透由难化易的数学思考方法,在教学例1时,让学生从2个点开始连线,逐步经历连线的过程,随着点的增多,得出每次增加的线段和总线段数之间的联系。学生经历丰富的连线过程后,整体观察和对比表格中的数据,发现每次增加的条数就是点数(n-1)。
生活就是数学,数学就是生活。学生学会数学思维方式去解决日常生活中的问题,可以培养应用技能及创新精神。在教学例题时,我采用了一题多解的方法,开拓了学生的思维,同时又培养了学生的创新思维,训练了学生思维的灵活性。之后,巩固练习让学生学以致用,灵活运用之前发现的连线问题的规律,解决这道生活中的问题,还能培养学生的迁移能力。整个过程都在逐步地让学生学会化难为易的数学思想,懂得运用一定的规律去解决较复杂的数学问题。
数学思考教学反思篇4
?题目】
?境头回放一】
生1:我还有一种方法。
师:你能介绍一下吗?
生1:我是比没投中的个数。李晓明和赵强都是3个没投进,而陈冬冬只有2个没进,所以陈冬冬投得最准!
师:他说得有道理吗?
生2:我认为他的说法有道理!
生3:我也认为是对的。
师:行!看来这种方法很受你们欢迎!现在老师也来参加比赛,假设投了2个,投中了1个。张老师只有1个没进,该是第一吧!
(停了片刻,“错了!错了!”学生不约而同地喊了起来。)
师:什么地方错了?
生4:不能比没进的个数!虽说张老师只有1个没进,但张老师投中的个数只占总个数,比、、小,所以张老师不能算第一。
?反思一】道理是悟出来的
“我是比没进的个数……”无疑,学生的想法是错误的,但对此的认识仅局限于我与极少数的优生。如何让每一位学生都明白这一道理,悟出这一方法的错误?如果我只是简单地判定这一想法的错误,学生的思维必定还是被这一假象迷惑,同样走不出思维的困境。在此瞬间,我选择了举例——我也参加这次比赛。面对我的“两投一中”,许多学生才终于恍然大悟,明白了比没进的个数只是一种偶然或是巧合。就这样,学生一片混沌的思维在瞬间得以清晰,在徘徊与犹豫中得以坚定。道理是悟出来的,简单的告之,学生也许会知道,但缺乏必要地体验与理解的成份,这样的知道必定是肤浅的。
?境头回放二】
师:张老师好不容易得个第一,被你们这样轻而易举地否定了。但张老师还是很服气的,因为你们说得在理。同学们,其实施俊杰的想法也是有道理的,只是缺少一个前提?
生5:我知道了。如果投的总个数是一样的话,就可以直接比没进的个数。
师:你的思维真敏捷!其他学生也明白吗?(师留给学生“消化”的时间)
师:在总个数一样的情况下,没投中的个数越少,成绩越好。那比投中的个数可以吗?
生6:也可以!
师:同学们,根据这样的一种思路,我们也可以知道谁投得准一些。我们应感谢谁?
生齐说:施俊杰。
师:是啊!虽说他的想法存在问题,但我们只要稍加改进,就成了一种好方法!因此,学习就要像施俊杰那样积极思考,并敢于提出自己的观点与想法,这样即使观点不成熟,也会给我们以启发,拓宽了我们的解题思路。
?反思二】错误成就精彩
“我是比没进的个数”其实这一想法是有一定的道理的,只是缺乏一个前提。如何“变废为宝”?以释放这一想法的内涵价值,并呵护学生敢于提问的勇气与勤于思考的习惯。“同学们,其实施俊杰的想法也是有道理的,只是缺少一个前提?”在这一问题的指引下,学生很轻松的得出了:在投的总个数一样多时,没进的个数越少,投得越准!
学习难免会有错误,关键是教师能透过错误探寻出它内蕴的价值,并藉此进行合理地处置与有效地引导,以充分激活学生的思维,让他们主动参与对“错误”再认识。“错误有时前进一步就是真理。”面对课堂生成的“错误”,我们要学会珍视它,让它成为学生思维的平台与跳板,这样错误就会成就课堂的精彩!
数学思考教学反思篇5
近日整理听课笔记,发现这样一个现象:课堂上诸如“对不对?”、“可不可以这样?”、“好不好”等的封闭型问题少了,取而代之的是“你认为如何?”、“你是怎样想的?”、“你能想出几种方法?”等极具开放性的提问。不可以不说这样的转变体现了教学的开放,反映了新课程的理念。笔者对此做了一些思考。
思考一:“你发现了什么?”应是理念的转变
案例一:揭示比例意义的概念(学生计算各比的比值后,教师板书)
3∶5=18∶30 0.4∶0.2=1.8∶0.9 ∶=7.5∶3
师:这就是今天我们要研究的比例。观察这三道等式,你发现了什么?
生:我发现3∶5=18∶30中3到18扩大6倍,5到30也扩大6倍。
生:我发现0.4∶0.2=1.8∶0.9中,0.4是0.2的2倍,1.8是0.9的2倍。
生:我发现前项扩大几倍,为保持比值不变,后项也应扩大几倍。
师(面露难色)我们看看表现形式,直观看有什么特点?
(生疑惑)
师:(无奈,分别指向三个等号)这些等号说明了什么?
终于有个学生说出表示两个比相等。
师:对了,像这样两个比相等的式子叫比例。
案例中“观察这三道等式,你发现了什么”这一开放性提问“一石激起千层浪”,学生的思维十分活跃,答案五花八门,课堂气氛很热闹。可我们也不难发现,教学效果不尽理想,虽然学生的回答可以说十分精彩,但离教学目标相差甚远,最后执教老师不得不“无奈地分别指向三个等号问:这些等号说明了什么?”这样生涩地把教学带向下一步。
应该说开放性的提问正符合了新课程提出的“数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动……数师应激发学生在自主探索和合作交流的过程中真正理解和掌握基本数学知识与技能、数学思想和方法,获得广泛的数学活动经验”等理念。但本案例中的“你发现了什么”却阻碍了教学。可见,开放性的提问应是一种教学理念的转变。这样转变未尝不是一件好事,课堂开放了,学生灵动起来了,智慧在师生互动中流淌。但任何一件事都是一把“双刃剑”,“你发现了什么”的开放性提问如果用在了不适当的内容,不恰当的地方,就起不到积极的作用,反而会像上述案例那样适得其反。
思考二:构建“发现”平台,在过程中建构知识
案例二:乘法分配率教学片段
教师出示三道题请同学们至少选择一题,用两种方法解答。
(1)上衣每件114元,裤子86元。如果购买50套需要多少元?
(2)桌子每张56元,椅子每把24元,买三套需要多少元?
(3)学校给鼓号队48人买队服和鞋。每套队服65元,每双白球运动鞋5元。一共需要多少元?
同桌互相说说自己是怎样算的?哪种方法简便,为什么?
(约5分钟后,学生说明思路及计算方法,师板书。)
(114+86)×50 114×50+86×50
(56+24)×3 56×3+24×3
(65+5)×48 65×48+5×48
师:每道题两种方法都能够得出相同的结果,我们就可以说左右两个算式是什么关系?
生:左右相等。
师:请仔细观察、分析这三个等式,你能从中发现什么规律吗?
生:我们小组的同学发现这三个等式左右两边都有加法和乘法。
生:我们发现左右两个算式都有相同的数。
师:你们找到了共同点,有相同的数和运算符号。很细致的比较,那么有不同的地方吗?
生:我们发现:左边算式先求和再求积,有小括号;而右边的算式先求两个积,再求和,没有小括号。
生:我们发现每道题的两种方法,在计算时有一种方法简便,另一种不简便。
生:左边的数50、3、48只用一次,而右边的算式中用了2次。
生:我补充,我们发现左边的算式中先求两个的和,再乘一个数,而另边的算式只不过用两个数分别去乘这个数。
师:非常好。正因为有了细致的观察,大家才会有如此多精彩的发现。刚才这位同学回答时用了一个词特别好。想想是哪个词?
生:分别。
师:对了,那么谁来结合例子具体说说“分别”的意思。
……
数学知识的形成是一个漫长的过程,其间蕴涵着人们丰富的创造性发挥。学生学习数学知识,就是将前人的经验转化成自己的知识财富的复杂过程。案例二中“仔细观察、分析这三个等式,你能从中发现什么规律吗?”的提
问引导学生经历从实际问题抽象出数学问题、把生活原型转化为数学模型的过程,让学生亲身经知识发生并逐步构建数学模型的过程。
同样是观察几道算式,问学生有什么发现,比起案例一来讲,案例二显然是成功的,教学效果是有效的。为什么会这样呢?关键是为学生构建一个发现的平台。案例一中只让学生计算了一下各个比的比值,初步看了一下后就问学生你有什么发现,此时学生的观察体会都是浅层次的,浮浅的,再加上提问没有明确的指向性,学生抓不住教师的要点,自然回答不到点子上。而在案例二中,教师创设了生活情境,在解决问题中列出算式。教师适时提出要求:同桌互相说说自己是怎样算的?哪种方法简便,为什么?让学生深入思考,充分交流。在此基础上,教师再抛出“仔细观察、分析这三个等式,你能从中发现什么规律吗?”这一问题,学生的交流自然是精彩的,发现当然是缤纷的,生成必然是创新的。
其实,“你发现了什么”这样的问题设计,目的是为了课堂教学的精彩生成,而这当然少不了教师课前的精心预设,这是一个师生互动、互学的过程。案例一中的设计,如果能放在比例意义概念揭示以后,让学生多写几组比例,然后仔细观察写出的比,体会写比的过程。在此基础上教师可以提问:比例表示两个比相等,其实它有着很多有趣的特征。请仔细观察,看看你有什么发现?这样教学就会事半功倍了。
思考三:提供“发现”时空,在操作中寻找规律
案例三:
教师借助演示,引导学生学习“有6个梨,每3个装一盘,可装几盘?”并诱发学生列出算式6÷3=2。接着,教师把“梨”的个数分别设为7个、8个、9个、10个、11个,让学生把教师发给的“纸片梨”、“纸片盘”拿出来,同桌间进行操作、讨论,并要求出算式。交流时,教师根据学生的回答,板书:
6÷3=2(盘)……0(个)
7÷3=2(盘)……1(个)
8÷3=2(盘)……2(个)
9÷3=3(盘)……0(个)
10÷3=3(盘)……1(个)
11÷3=3(盘)……2(个)
师:根据上面这一组算式,你们能发现什么?
生:除数都是3。
生:被除数一个比一个大1。
生:余数只会出现0、1、2三个数。
师:那么,余数会不会出现3呢?
生:不会。因为如果还余3个的话,那么就可以再装一“盘”了,这样余数又为0了。
师:除数为3时,余数有0、1、2三种可能,这说明了什么?
生:我猜,余数要比除数小。
师:是这样吗?大家再举一些例子,比如我们现在令除数为4,写几道算式,研究研究。
(学生操作)
师:你现在又有什么发现?能用一句话概括吗?
生(高兴地):余数必须比除数小。
……
这一教学片断以学生活动为主,学生亲自参与探究过程,而教师的作用主要体现在创设亲自动手操作的情境,充分提供给学生发现的时空,让学生积累一些感性认识。教师通过两个开放性提问:“根据上面这一组算式,你们能发现什么?”、“大家再举一些例子,比如我们现在令除数为4,写几道算式,研究研究。你现在又有什么发现?能用一句话概括吗?”引领学生观察、比较、讨论。使学生的自主探索、小组合作有的放矢,有章可循。
教学实践给我们这样的启示:书本上的知识是前人总结出来,但对于学生来说,又是有待发现的新知识。因此,在小学数学教学中,教师要善于引领(你发现了什么只是其中一种有效的手段)学生按一定的步骤去自学地提出问题、研究问题、解决问题、发现新知,从而使他们在学习过程中获得成功的精神体验。即使学生一时不能发现问题,教师也要有足够的耐心,给学生充足的时间,等待学生去思考,去操作,去交流,去发现知识,寻找规律。
思考四:提高“发现”质量,在思考中发展思维
案例四:组两位数
教师出示:有5张数字卡片1、2、3、4、5,从中抽出2张组成两位数,你能组哪些呢?你知道一共有几个两位数?
生:12、23、34、45、42、
生:21、24、13、51、35
……
学生们七嘴八舌地说着,教师一一板书在黑板上。
师:还有其他答案吗?
生:想不出来了。
师:很好,一起来数一数,一共有几个?
生:20个。
很显然,这是一道开放式练习题,有利于培养学生的发散性思维。答案找到了,一共有20个。但本案的.教学似乎总缺了点什么?用我们现在流行的话说:味道没有做足,蛋糕没有做大。开放练习可以从质和量两个方面来发展学生的思维。量指学生在解决问题时“想得多”和“想得快”;质指学生在解决问题时“想得全”,即不重复、不遗漏,有规律地寻找解决问题的方法或全部答案。这是对学生思维的更高的要求。而本案例中学生的表现却是想到什么说什么,思维是零散、无序的。教师也仅仅停留在从量的方面上发展学生的思维,忽视了对“质”的追求,忽视了习题中隐含的规律,忽视了对学生有序思维的培养。利用开放性问题的独特作用,我们可以这样组织教学。
师:靠着集体的智慧我们终于找到了所有的答案。可我总感觉不是很好?你们呢?
(让学生也感觉到这样零散地想,不够系统,容易遗漏或重复。一个人想的话,就更不容易想全了。)
师:让我们把刚才大家写出来的两位数排排顺序。
学生的排列方式有很多,教师引领学生统一一种排法,即:12、13、14、15;21、23、24、25;31、32、34、35;41、42、43、45;51、52、53、54。并分行排列,如下
12、13、14、15;
21、23、24、25;
31、32、34、35;
41、42、43、45;
51、52、53、54。
师:仔细观察我们排列好的数,你有什么发现呢?
给学生充分的时间观察、交流,发表意见,最后引导学生认识到找两位数的较好较快的方法是先确定十位上的数,再确定个位上的数。按这样的方法写两位数,能做到有条不紊。按照年段的不同,我们可以提出不同的教学目标。如果这一内容放在高段,我们不妨再提高要求,可以引入乘法原理的初步知识。不管怎样,通
过这样的调整,即培养了学生思维的灵活性,发散性,更能培养学生思维的严密性和科学性。
思考五:体验“发现”快乐,在感受中健康成长
案例五:求两个数的最大公约数和最小公倍数。
出示题目:求12和30的最大公约数和最小公倍数。
(学生很快都用短除法的形式求出12和30的最大公约数是6,最小公倍数是60。这显然不是本节课探求的重点。本节课的目的是要让学生通过深入的观察、分析、比较、总结,发现最大公约数和最小公倍数的异同。于是执教老师提出了新的要求。)
师:其实求两个数的最大公约数和最小公倍数有着密切的关系,请大家仔细观察用短除法求解的过程,先独立思考,然后在小组内交流一下,看看你有什么发现?
集体交流时,学生发言很踊跃。
生:我们小组得出求最大公约数和求最小公倍数的相同点有:都是用短除法的形式分解质因数的,都要用它们公有的质因数或公约数去除,都要一直除到两个商互质数为止。
生:我们发现了不同点是:最大公约数是将所有的除数乘起来,也就是公有的质因数相乘,而最小公倍数要将除数和商都乘起来,也就是公有的质因数和它们每个独有的质因数相乘。
师:分析地很好,这是它们最本质的区别,正是求最大公约数和最小公倍数方法不同的地方,最容易混淆,咱们在做的时候要注意别乘错了。
生:老师,我们小组有一个发现,12和30的最小公倍数60是它们最大公约数6的10倍,这正好是除到的两个商2和5的乘积。
师:有意思,还有什么发现呢?
生:我也有个发现,不知对不对。我想可以用12×5或30×2,积都是60,这就是它们的最小公倍数。
师:将这两个数和短除法后所得的商交差相乘,还真能得到这两个数的最小公倍数。
生(高兴地):这样不就可以用来检验了吗?
师:同学们真了不起,连验算都想到了。不过,我有个疑惑,这些发现是否真的正确,换其它的数能否成立?
生:我们可以举例验证一下。
师:这是个好提意,大家动手做吧,也许你还会有新的发现呢?……
学生兴致勃勃地投入到新的探索中去,争辩声、笑声不时回荡在教室内。
?数学课程标准》指出:“能积极参与数学学习活动,对数学有好奇心与求知欲;在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。”在课堂上,教师通过创设一定的情境,让学生体验数学活动充满着探究与创造。学生通过积极思考、自主探究与合作交流,获得了成功的喜悦,同时也增强了学好数学的自信心。
在上述案例中,学生之所以会有那样的发现,开放性的提问(几次问你有什么发现)、教师的鼓励无疑起到了推波助澜的作用。学生不但自己首先品尝到了“发现――成功”的快乐,同时还引领其他学生进入更深层次的思考,于是便有了更精彩的发现。在这样的教学中,学生的思维过程得以尽情展示,情感得以尽情宣泄。这样良好的氛围,积极的心理场,激励着学生向科学的殿堂攀登。
教学需要关注细节,让我们进一步思考“你发现了什么?”,也许你会有新的发现。
数学思考教学反思篇6
算法多样化是不是就等同于一题多解,是不是算法越多越好呢?这是值得所有的小学数学老师思考的一个问题。作为教师,我们不应忽视学生的认知基础和思维水平,一味地强调算法多样化。我们教师在实施算法多样化的过程中,必须解决好两个问题:
1、要正确理解算法多样化的实质。
算法多样化是数学课程改革倡导的一种新的教学理念,是教师鼓励学生独立思考,用自己的方法解决问题,培养学生的创新思维,促进学生个性发展的体现。它是针对计算过程中,不同的学生会从各自的生活经验和思考角度出发,产生不同的思考方法而提出的一种教学策略,也是尊重学生个性化学习、促进学生个性化发展的有效途径,其实质是尊重学生对计算方法的自主选择。让他们在计算中感受计算方法和解决问题策略的多样性。为此,教学中教师不能为了算法的多样化,而将算法形式化、教条化。
不少算法是在教师“还有不同的方法吗”的不停追问、暗示下“逼”出来的。像有的学生为了“配合”教师,把实际计算中自己不用的算法“上报交差”;有的学生则为了“与众不同”,人为地拼凑算法;有的算法实际上是与别人雷同的……可以说,这些算法并不反映学生真实的思维状态,也没有多大的实际价值。由此可见,教师如果片面地追求算法的数量,以为算法越多越好,而忽视算法的质量,忽视算法背后所代表的学生真实的学习状态,很容易会把学生引入钻牛角尖和乱用算法的误区。这对学生的发展是非常不利的。
2、处理好算法多样化和算法优化的关系。
每个学生的生活经验和思维发展水平不同,对相同的教学内容往往表现出个性化的认识和理解,所使用的计算方法必然多样性,因此在解决数学问题的过程中就会形成多种方法。在这些方法中,有些算法比较简便,有些算法比较麻烦;有些算法思维水平较低,有些算法层次较高,这就会产生算法优化的问题。算法优化的过程应是学生不断体验和感悟的过程,而不是教师强制规定和主观臆断的过程,教师要让学生自己逐步找到适合自己的最优算法。例如,解决“18+7”这样的计算问题时,学生提出各种算法后,教师不要急于评价,也不要用一种算法去统一,更不能算法“自由化”,即想怎样算就怎样算。可以对学生提出的各种算法进行比较、分析,让学生在与同伴的交流比较中了解各种算法特点,找到适合自己的一种或者几种算法,以此正确地理解算法多样化和算法优化的关系。
至于教材中编排的某些算法,如果在教学时没有学生提出,教师应从学生的认知实际出发,区别对待。其一,若已经是学生不用的“低思维层次的算法”,教师可以不再出示,以免学生走回头路。其二,若是算法经教师“千呼万唤”仍不“出来”,说明算法离学生“最近发展区”很远,大可不必呈现。其三,若是有利于学生今后进一步学习和发展的算法,教师可通过提示等方式引导学生进行探索,也可通过向学生推荐等形式进行呈现。当然,我们也要注意避免把算法刻意“灌输”给学生。
数学思考教学反思6篇相关文章: