通过优秀的心得体会,我们能够更好地发现和发挥自己的潜力,通过心得体会,我们能够更好地应对工作中的挑战和压力,下面是好学范文网小编为您分享的数学考研心得7篇,感谢您的参阅。
数学考研心得篇1
第一,对概率论与数理统计的考点要整体把握。考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。
第二,在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。一般同学都会处于后一种状态。那么怎么办呢?请转阅第二条。
第三,在心理上重视。考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。人的潜力是非常巨大的,这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!
考研高数重难点:中值定理证明的方法
中值定理包括费马引理、罗尔定理、拉格朗日定理、格西中值定理、泰勒中值定理,这四个定理之间的联和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。而且同学们需要掌握的不单单是这五个中值定理,而且关于他们本身的证明也是需要重点掌握的,尤其是费马引理、罗尔定理、拉格朗日定理、格西定理的证明过程,这个过程在教科书上都有证明的过程,同学们需要自己把这个都完全能够掌握,不仅仅是因为在09年的真题考查过这个的证明,而是这几个的证明思想是之后类似题目证明反复使用的。而闭区间上的连续定理主要是指的最值定理、介值定理、零点存在定理。
一般来讲闭区间上连续的定理是直接用的,也就是用来直接证明一些类似与存在一点在某个区间内使得某个函数是等于零的。而中值定理的应用一般是需要通过构造函数的,一般来讲都是三步走,第一步去构造函数,合理的去构造函数是能够做出这个证明题目最最关键的一步,而构造函数的方法一般是通过对要求的那个等式积分得到,同时也要注意两遍同时乘以一个函数,比如同时乘以ex,因为这个函数积分是不变的,所以会有这个。构造完成后就是第二步去检验条件,看是用那个定理,一般来讲,如果是求一阶的导数等于0优先想到的就是罗尔定理,如果是让你求高阶的一个式子等于零或者等于某个式子,那么优先想到的就是泰勒公式了,因为上面的五个中值定理中,只有泰勒公式是会涉及到高阶的,其他的几个都是一阶,如果知道的是一阶,最多也是求解二阶的。第三步就是求导验证自己求出来的是否是要求证明的结果。
考研数学微积分要点:连续性概念及应用
首先,所谓连续即“极限值=函数值”,这一个等式包含了三个方面:
1、函数必须在该点处有定义;
2、函数必须在这个点附近存在极限;
3、是前面1、2两点的内容必须相等,同时满足这三个条件,才叫做函数在某点处连续。
看到,判断函数连续,要先求极限,所以,如何求函数在该点处的极限值或是用极限存在的充要条件(左右极限存在且相等),是一个隐含的知识点。
其次,我们自然会问,会不会有不连续的点呢?答案当然是肯定的,不连续的点就是我们所说的———间断点。那么所谓“不连续”就是不能同时满足连续的三个条件的点,即:
1、函数在该点处没有定义;
2、若函数在该点有定义,但函数在该点附近的极限不存在;
3、虽然函数在该点处有定义,极限也存在,但是二者不相等。
对于间断点,根据左右极限存在与否,我们把它分为两类。若左右极限都存在的间断点,称为第一类间断点;若左右极限相等,这个间断点称为第一类间断点中的可去间断点;若左右极限不相等,这个间断点称为第一类间断点中的跳跃间断点。若左右极限中至少有一个不存在(包含极限等于无穷的情形)的间断点,称为第二类间断点;若其中一个极限是趋于无穷的,这个间断点就称为无穷间断点;若极限是在两个常数之间来回振荡的,就称为振荡间断点。
最后,对于连续性最重要的应用或者是说考研中的一个小难点,就是闭区间上连续函数的三个性质:最大最小值定理、零点定理、介值定理。
对于上面的知识点,我们看看在考研中是怎么考察的。对于连续的概念,难度上属于简单知识点。
首先,在十五年前,对于连续性的考查,更多的是给一个分段函数,然后判断分段点处函数的连续性,这是一个基本题型,只需判断连续的三个条件即可,其实主要是考查求函数某点处左右极限的值。
然后,进入20世纪,考查又倾向于在选择题当中,给一个函数,让大家来判断这个函数有多少间断点,间断点的类型是什么,这个又比之前考查的更高一层。
最后,就是在逻辑推理题中,考查零点定理,介值定理,通常,考查介值定理的时候也会用到最值定理。
我们归纳题型知道,判断方程根的情况的时候,一般用零点定理;题干中包含好几个函数值相加的时候,一般用介值定理。具体在证明题中怎么用,我们会在专门的证明题专题中讲解。
上面是对连续概念本身做出的分析。还有连续与极限存在,可导,可微的关系也是选择题中考查的热点,这个我们在后续一元函数导函数中详细说明。
数学考研心得篇2
经验二:对于数学学习,本人的感受是学习时要平心静气,并坚持不懈。你可能不是最聪明的人,但你也可能成为最后赢得竞争的人。在我上大学时的同学们之中,当时成绩并不怎么好的人却最早考上研,与这位同学交流才得知,持之以恒是他比别人早达到目标的首要原因。做任何事情,在确定目标后,一定要坚持一定的时期才能显出效果来。滴水穿石的力量是极其巨大的。借口工作紧张,上课忙碌就不坚持考研准备并不是合理的理由。
数学,不论题目难简,想拿高分,填空与选择用时不应超过45分钟,留给大题多一些时间。
数学考研心得篇3
利用微分中值定理:微分中值定理在高数的证明题中是非常大的,在等式和不等式的证明中都会用到。当不等式或其适当变形中有函数值之差时,一般可考虑用拉格朗日中值定理证明。柯西中值定理是拉格朗日中值定理的一个推广,当不等式或其适当变形中有两个函数在两点的函数值之差的比值时,可考虑用柯西中值定理证明。
利用定积分中值定理:该定理是在处理含有定积分的不等式证明中经常要用到的理论,一般只要求被积函数具有连续性即可。基本思路是通过定积分中值定理消去不等式中的积分号,从而与其他项作大小的比较,进而得出证明。
除此之外,最常用的方法是左右两边相减构造辅助函数,若函数的最小值为0或为常数,则该函数就是大于零的,从而不等式得以证明。
考研数学复习建议
一、打牢基础
“懂”,首先要求同学们对考研数学的形式、考研大纲及考研用书进行全面的分析与深入的了解。这个阶段,要求同学们全身心进行基础阶段的复习。这个阶段同学们一定要认真细致学习课本基本知识点,弄熟定义、公式、定理及相关习题。只有打牢基础,才能决胜千里。最后,要求同学们做好规划,合理安排复习,做好经常性的总结与归纳。
二、踏实前行
数学不像英语和政治科目,能通过一定的背诵、记忆,就能取得可观的成绩。数学必须通过大量的练习,才能得到巩固。不盲目地搞题海战术,要有计划、有针对性地做题,才能将知识领悟得透彻。强化阶段,同学们一定要利用好复习资料,做题的过程中,重点积累技巧与方法,吃透数学的知识点与题型。
三、总结归纳
经过前期基础知识的积累和做题的巩固,同学们对知识点、练习题、真题都有了深刻的认识。这时,要做好归纳与总结,构建整体的知识结构体系,将之前所学的知识点牢牢记忆在脑海中。充分利用知识的迁移,达到举一反三的效果。遇到一些重点和难点题型,首先不畏惧,其次回顾之前学习的相关知识,并有效利用它们,来解决遇到的问题,最后将以往所学深深记忆在脑海中,达到“化”的境界。
考研数学复习历年考的最多的知识点
1、两个重要极限,未定式的极限、等价无穷小代换
这些小的知识点在历年的考察中都比较高。而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
2、处理连续性,可导性和可微性的关系
要求掌握各种函数的求导方法。比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。数三的同学这儿结合经济类的一些试题进行考察。
3、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程
对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。对于二阶常系数线性微分方程大家一定要理解解的结构。另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。
对于二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。
4、级数问题,主要针对数一和数三
这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的`问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。
5、一维随机变量函数的分布
这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性。
6、随机变量的数字特征
要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。
7、参数估计
这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。
数学考研心得篇4
何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。
在安适的山寨容易埋葬憧憬,在舒适的田野容易迷失方向。失去竞争实力时才去感叹时光如逝,何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。我希冀,我付出,所以我收获。你是否也像我一样为考研奋斗而最终收获呢?你的心中是否有明确的计划去实现你的理想呢?在此我希望与大家分享自己的心得与体会,使大家少走弯路,顺利攀登考研高峰。
制订好整体复习计划,合理安排复习时间,是相当重要的。对数学复习而言,我将其大体分成三个阶段。
一、以书为本,总体把握
因为课本对基本概念的定义,基本原理的推导都是十分准确、精练的,掌握了这些基础知识体系,后续阶段的复习会取得事半功倍的效果。有些同学一开始就盲目地追求做题数量,忽视了课本的复习,那是极不可取的。必须通过对课本的复习,理出一个知识框架体系,从总体上把握考点。另外,必须定期总结和巩固前一阶段所学习的知识,温故而知新。
二、认真做题,广积思路
众所周知,数学还是以练为主的。除了第一阶段必须完成课本上的习题外,主要的精力应集中在陈老师和黄老师本书所提到的黄老师均为黄先开教授。主编的《复习指南》上。刚做这本书上的习题时,我真有点力不从心,有时觉得解题方法很奇特,而答案也有些突兀。经过陈老师和黄老师上课时仔细地讲解,我对这些难点有了更深刻的理解。老师们稳重的授课风格,有条不紊的解题思路,以及循序渐进、举一反三的教学方法使大家能够更有效地吸收知识。我想强调融会贯通的重要性,千万别为了做题而做题,因为做题只是一种手段而已。应通过做题将所学知识点联系起来,并将所学的思路与方法为己所用。
三、研究真题,查漏补缺
从一些研究生介绍和自我感觉来说,真题的作用绝对是其他模拟题所不可替代的。只要你仔细研究就会发现历史是如此惊人地相似,很多考题都是貌离神合。应该用一到两个月的时间来做和研究近十年真题,包括数(一)到数(四)中你要考的内容。这不仅可作为检测自己最直接的手段,而且更重要的是能让考生熟悉考试的内容和侧重点,了解命题人的命题思路。在分析真题时,可找出自己的不足,再回到课本和辅导书进行复习巩固,理解的程度自然就加深了。至于模拟题应有选择地做几套,目的只是练练手,切勿一味贪多。
当然,检验复习效果要靠考试,所以在抓做题的同时也要注意应试技巧的训练。主要做到快、准、全。快要求你通过分析能迅速找到解题思路:准则要求解题过程中运算要准确无误;而全则是必须按标准答案的步骤答题。以上三点需要你在平时训练中慢慢积累,如在做真题时严格按考试时间和要求检测自己,通过八套左右的练习,到考试时自然是水到渠成了。最后衷心祝愿师弟师妹们在来年的考研中取得理想的成绩。
点评:凡事预则立,不预则废。周琳同学成功的一个关键点就是制定了一个良好的学习计划,有一个学习的总纲,纲举则目张,在总计划的总框架下再制定合适的分计划,计划中重点突出、轻重有别,一个良好的学习计划就产生了,好的学习计划是成功的一半。制定计划至关重要,广大考研同学切莫大意,千万不能跟着感觉走。从管理学的角度来说,与计划的制定相比,计划的执行和控制同样非常重要,所以要提醒广大考生不要说而不做,只计划不执行,同时还要注意根据实际情况对计划做出调整,做好对计划的控制。
数学考研心得篇5
先说初试,绝大多数的数学专业初试都只考数学分析、高等代数两门课程。这两门课的知识点就那么些,所以主要考查的是你的熟练度。也就是说考研初试这东西和别的考试一样,秘诀只有一个,就是卖油翁的那句话:无他,唯手熟尔。指望在考场上那种环境下对一道原来没见过不熟悉的题目想出解法是一件很不现实的事情。就算你真的可以做到这一点,也会花掉不少的时间,而考研这种选拔性考试的设计初衷就意味着,你这样做的时候就相比其他准备充分的人已经处于劣势了。
至于具体的话,一开始你需要找一套报考学校的数学分析和高等代数的教材,从头到尾细细的过一遍,例题和习题都自己亲手做了。这个过程一方面是复习基础知识的过程,另外一方面,虽然这两门课的内容每个学校讲的都差不多,但是在具体的某些细节以及例题和习题上还是可能会不一样的。而且一般好一点的数学专业都是自主命题的,出题人就是学校的老师,他们平时上课和出题时的参考就是本校的教材。
做完了上一步,就可以开始愉快地刷题了,一般学校都会有前几年的考研真题出售,在网上也能找到一些,这个多多益善。能做多少做多少。另外就是有那种卖的集结成书的真题汇编,一般来说内容都大同小异,可以买一套看着顺眼的做了。别的参考书的话,数学分析方面裴礼文值得一做,高等代数我一直没找到比较合适的。
说白了,考研初试的形式更接近于高考,都是考察有限的知识点的熟练程度和你见过的套路的多少。所以不用谈什么对数学的理解,什么深刻内涵,拿出笔和草稿纸,用准备高考的劲头刷题才是最好的办法。
至于复试,一般都是笔试+面试的形式,具体内容的话每个学校没有固定的套路。只能泛泛地说笔试一般是考察那些初试没有考到的专业课的内容,主要的考察方向是广度而不是深度,比如我们学校基础数学专业的复试笔试是一张卷子12道题,涵盖了实复变,泛函,常微偏微,抽象代数,拓扑,微分几何等内容,需要选五道不同方向的题作答。所以这一步很大程度是看你本科阶段整个的学习过程的。虽然也可以花时间准备,但是效果上不会像准备初试那么立竿见影。
面试的话,除开英语,很大程度上是看你和面试老师的互动交流,也就是说,很大程度上是『看脸』。除了像
说的要自己『吹』自己在外。一般还要回答面试老师提出的一两个问题。这种问题的话,一般都是和你所报考的方向相关的,而且很多都是可以几句话说清楚的,所以一些基础的概念,定理什么的,记熟点儿还是有好处的。
数学考研心得篇6
每一个例题,每一道习题,这是你以后成功的保证。对于概念,定理,要有自己的理解,可以用自己的语言来描述,可以知道他们彼此之间的关系,能做到合起书,将一个个定理在草稿纸上推导出来,知道书中各个章节的顺序,并且知道他们之间的联系。说得夸张一点,你可以默写出书中各个章节的标题,包括小标题。如果你能做到以上的,你的概念和理论就没有一点问题了。
再说例题,课本上的例题很简单,但是很典型,最简单的例子最容易说明最重要的问题,你就不会被繁琐的解题步骤弄的不知道例题到底想说明什么。举个例子,在一阶导数的例题里,仔细看看,你就会发现,例题中包括所有的求导方法。也许,你自己却从未意识到,还在看考研参考书里的分类,永远记住,课本是最好的参考书。
最后说习题,书上的习题,相信没有多少考研的人每一道题都认真做过。但是,习题,就如同例题,简单,但是最能要你明白你所需要学习的知识点。所以,对于课后习题,你用过仔细认真的去做每一道题。会做并能做对每一道题是最基本的要求,你还要明白你所做的每一道题是考察你什么知识点,用的是什么方法,可以尝试在习题旁边写上出题人的意图。能做到以上3点,可以说你就拥有一个很好的基础了。高数,线代,概率,这三门课是一样的。线代,其实最简单,如果你能不看书推到出每一个定理(如果能,你就知道他们之间的联系,那思路一定会很清晰),那么我想如果你不会做的题,那90%的人肯定不会做。
概率,看起来公式太多,很难记住,同样,推导每一个公式,平时练习的时候做到不看书查公式,查定理,忘记了或者记不住了,就推导。慢慢你就会发现,你都可以记住了,即使考试一紧张忘记了,也能用很短的时间推导出公式了。曾经在考研论坛上看到过,刚开始复习的时候觉得高数简单,线代和概率太难。随着复习的深入,就会发现线代和概率是那么的简单,高数有点难,这就对了。我觉得课本至少看两遍,一直看到,闭着眼,能回想起书中的每一个知识点。当然,根据自己的基础,如果你还觉得哪些知识点薄弱,那就多做习题,不要把盲点留到最好。在复习课本的时候就可以做真题了,我选的是黄先开的那本历届数学真题解析,将近20年的数学真题分章节讲解,练习题也是真题,不过不是数一的。认真的做每一道题,然后思考出题者的意图,这一点很重要。
大概10月份的时候,我就复习完了。可以模拟考试了,那本书后面有数学的20年真题,那几张白纸,在白纸上写答案,3个小时做完。然后对答案,自己给自己打分。可以发现,前20年到前10年的题很简单,基本可以做到140,后10年难点,但不会低于120分。将自己做错的题分析一下,看看为什么做错了,是自己不细心还是方法不对还是压根就不会,认真总结错误的原因。第一遍模拟考试做完以后,将自己做错的题目再做一遍,然后就可以只做最近10年的题目,同样的方法,再做一遍,相信这个时候你就不会觉得自己担心数学了。
平时我模拟做真题都是130分以上,最后考了120分,还算不错。数学,是很细心的,所以你要从一开始就培养自己细心做题,踏踏实实一步一步的写,考试的时候才不会犯错误。选择,填空,最多只能错一个,不然你一定不会高分。我始终坚持一点,会做的题目一定不能失分,我可以有不会做的题目。这样,考试也就没压力,还能拿高分。在这里告诫各位,做题一定要大脑清晰,不要拿到题就梦着头做,要不了最后你还是觉得自己很多东西都不会。做题不在多少,一定要注重质量。到11月份以后,我基本上两天做一份真题,也就花3个小时来复习数学,这样才有时间复习专业课。随偶时间不多,但是最后却感觉有点简单,自己都有点担心,不过后来看来是多虑的,一定要相信自己。
数学考研心得篇7
在选公选课的时候还并没有考研的意向,只是处于兴趣,加上同一宿舍同学的鼓动。直到上个寒假才下定决心要考研,并且庆幸自己的选择,在上了这一学期的课程后,更觉得这个选择非常明智,对考研数学有了更深刻的认识,不仅仅局限于自己的理解,而是准确高效应对考研数学。
150分的总分,区分度也大,对基础的考察更重要,课本和真题高于一切,这是我从刘老师那里学习到的。
在上考研课之前,差不多看完了高等数学部分的课本,只是习题没做,直到课上才发现会有好多课本根本不会明讲或涉及的知识从刘老师那里得知,包括难懂的推演,比如拉格朗日定理和泰勒定理的证明,通过构造新的函数,然后通过学过的罗尔定理加以证明;或者简单但易错的概念:极限的保号性,保序性,保运算,渗透在解题中我们却不看重;还有需要巩固温习的比如微分方程的求解,关键是要系统理解,梳理清楚;再就是弱项的线性代数部分,当时学的也不扎实,导致现在复习吃力,好在有刘老师的系统梳理:
逐个击破。
数学是考研的一个重头戏,分数高,易拉开差距,重基础,如果闷头自己看自己的书,就会错过很多必考但容易得分的题型,所以一个好的导师很重要,感谢刘老师这学期的耐心指导,无论天气炎热,无论听课的人的多少,还是忘我投入的讲课以至于错过班车,都会激情四射的演讲,我也钦佩老师的幽默诙谐,平易近人更易利于同学与老师的交流,更重要的是老师无私的给我们复印的珍贵资料,对于强化阶段的学习奠定良好基础,对于这学期的公选课,获益远比看看学长学姐的经验教训来的实在。
数学考研心得7篇相关文章: